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A simple mathematical model is constructed to describe the regime of flow, extending 
over a wide range of values of Taylor number, in which turbulent Taylor-Couette 
flow in the annular region between two coaxial circular cylinders is characterized by 
the coexistence of steady coherent motion on two widely separated scales. These scales 
of motion, corresponding to the gap width of the annular region and to a boundary- 
la,yer thickness, are each identified as the consequence of a centrifugal instability, and 
are described as Taylor vortices and Gortler vortices respectively. 

The assumption that both scales of motion are near marginal stability gives a 
closure to a pair of coupled eigenvalue problems, and the results of a linear analysis 
are shown to be in good agreement with many features of experimental observations. 

1. Introduction 
An earlier paper (Barcilon et al. 1979, subsequently referred to as BBLM) has 

reported observations, at very high values of the non-dimensional parameter that 
characterizes these flows, of an organized small-scale structure near the cylindrical 
walls in Taylor-Couette experiments. These experiments examined the behaviour of 
a fluid contained between two coaxial circular cylinders when the inner cylinder 
rotates a t  an angular speed SZ, while the outer one remains fixed. One of the important 
non-dimensional parameters in this problem is defined for a narrow-gap experiment 
as T = R, SZ; L3/v2  

and is called the (laminar) Taylor number in recognition of the important theoretical 
and experimental original contributions made by Taylor (1923) to this problem. In 
the above defining equation, R, is the inner radius, L is the gap width and v is the 
(laminar) coefficient of kinematic viscosity. The sequence of flow behaviour observed 
as T is increased is discussed in some detail in BBLM, but i t  suffices to recall here 
that the transition from a state of no meridional motion to a state in which laminar 
toroidal vortices, called Taylor vortices, are first observed occurs when 

( 1 . 1 )  

T = T,, 

where T, depends on the gap width and T, z 1700 in the narrow-gap limit. Over a 
wide range of values of T such that T, < T < 400T,, a variety of wavelike 
perturbations disturbs the Taylor vortices, and much of the recent work on this 
parameter range has been well reviewed by DiPrima & Swinney (1981). However. 
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FIGURE 1 .  Ratio of scale of Gortler vortices to radius of curvature of wall for various gap widths. 
The scale is seen to depend only on Q, and not on the Taylor number, which varies by two orders 
of magnitude at  a given Q, between the cases of narrowest and widest gap. Experiments performed 
by D. J. Quigley; theoretical prediction of this paper indicated by the solid line. 

for TIT, 9 400, one observes steady turbulent structures which have many of the 
features of the laminar Taylor vortices. These structures, recognized in the flow- 
visualization photographs of BBLM by the axially periodic dark bands indicating 
radial inflow and outflow boundaries, are not wavy and exhibit a remarkable 
steadiness as TIT, is increased over two or more orders of magnitude. A striking 
feature, not observed with the laminar Taylor vortices, is the presence, on the outer 
wall, of a fine pattern of streaks which tilt alternately at small angles + 0  in 
neighbouring cells. This organized pattern was described by BBLM as 'herringbone' 
because of its appearance, and they conjectured that these streaks were the inflow 
and outflow of Gortler vortices (Gortler 1940) existing in the wall-boundary-layer 
region of the much larger Taylor circulation cells, and oriented along the helical 
streamlines of these cells, the pitch angle of which is measured by 0. The scale of the 
Taylor cells is commensurate with the gap width L between the rotating inner 
cylinder of radius R, and the outer stationary concentric cylinder of radius R,. 

Comparison of an elementary theory with experiments was made in BBLM, and 
subsequent experiments by Mobbs, using several different gap widths, have given 
similarly good agreement, supporting the original interpretation of the physical 
mechanism responsible for the small-scale streaks. We display this wider range of 
results in figure 1 .  Recent spectral results obtained by Mobbs are exemplified in figure 
2;  the marked dominance and containment near the wall of structures on the 
Gortler-vortex scale is very apparent. 

The Gortler instability is of course a centrifugal instability, potentially occurring 
on a curved flow in which the circulation or local angular momentum decreases 
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FIQURE 2 .  Frequency spectra obtained (a )  at midgap and ( b )  2 mm from the outer stationary 
cylinder a t  TIT, - 20000, LIR, N 0.1. The very dominant frequency apparent in case ( b )  is 
presumed to correspond to the Gortler vortex streaks visible a t  this value of T. 

outwards along the radius of curvature. The unstable modes or Gortler vortices 
described in the classical linear theory are tied to a rigid concave wall, the no-slip 
condition a t  which enforces such an outward decrease in circulation, and these 
vortices decay exponentially away from the wall. Thus no direct dependence on the 
gap width is expected in the occurrence and behaviour of Gortler vortices provided 
that the e-folding distance over which they decay is small compared with the gap 
width, and the observations a t  widely differing gap widths support this expectation; 
the existence and scale of the Gortler vortices depend only on the boundary 
curvature, together with the angular velocity Q, of the inner cylinder, since a t  high 
values of the Taylor number, the mean azimuthal velocity is near to $2, R, in a wide 
interior region away from the walls (see figure 3).  

In  experiments by Mobbs using low densities of aluminium particles for flow 
visualization, similar vortices are also seen on the inner convex wall, tilted in the sense 
opposite to that on the outer wall. The physical mechanism here is of course the same, 
since there is again a decrease in circulation, outwards along the radius of curvature, 
from the rotating inner cylinder to the interior region in which the mean azimuthal 
velocity is near to $2, R,. 
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FIGURE 3. Variation of circulation ( T  in our notation) with radius, schematically represented but 
based on observations of Taylor (1935), shown by solid circles, and many others. 

I n  this paper we develop a consistent mathematical formulation, exploiting the 
wide separation of scales of the Taylor and Gortler modes, and isolate a pair of coupled 
eigenvalue problems for the existence of the two modes, together with equations 
satisfied by a mean (i.e. axially uniform) component of the flow field. For the flow 
far from the boundaries, i.e. in the ‘Taylor’ problem, we use a macroscopically 
averaged form of the Navier-Stokes equations, in which the averaging of the fine 
turbulent structure is parametrized by an eddy viscosity. Near the boundaries, by 
assuming a laminar steady state and linearizing about a mean swirl, we obtain 
equations similar to Gortler’s original eigenvalue problem. The two stability problems 
are coupled through matched asymptotic expansions ; the crucial assumption of 
marginal stability for both modes is required to ‘close’ the problem in the sense of 
providing a relationship between Reynolds stresses and mean profiles; it also enables 
us to use linear theory to make predictions of cell size, mean velocity profile, and 
torque transport. The good agreement with experimental results provides a posteriori 
justification of this assumption. 

Perhaps the only striking observational feature upon which linear theory is unable 
to throw any light is the orientation of the herringbone pattern. However, the Gortler 
vortices are expected to lie along the total streamlines of the larger-scale Taylor-type 
structures, and the change of Orientation with changing Taylor number is in good 
agreement with observed values of the amplitude of motion in the Taylor cells a t  high 
values of 7’. The decrease in the Taylor-cell amplitude with increasing Taylor 
numbers, as is shown in figure 4, suggests small tilts of the herringbone patterns away 
from a plane perpendicular to  the rotation axis. 

We expect that  a prediction of the amplitude of Taylor cells, and hence of the 
orientation of the Gortler vortices, will require the development of weakly nonlinear 
theory pivoted about the results of this paper. Such a theory will, of course, be 
expected also to alter, to a small extent, the predicted values of our observations, 
but not to vitiate the excellent results of this linear theory. Our approach bears some 
resemblance to that adopted by Howard (1963) for the closely related problem of 
Rayleigh-BBnard convection a t  high values of the Rayleigh number, later developed 
by many workers into more formal upper-bound and optimum theories of turbulence 
and admirably surveyed by Busse (1978, 1981). The Taylor-Couette problem differs 



Organized structures in turbulent Taylor-Couette jlow 433 

I I I I I *  

105 106 107  lo8 T 
0 01' 

104 
Taylor number 

FIGURE 4. Amplitude of circulatory motion in Taylor vortices (after Bouabdallah & Cognet 1980). 
The amplitude is deduced from measurements of velocity gradients at the outer wall at different 
points of the Taylor cell. 

from that of convection in a horizontal layer, or of turbulent channel flow, in its strong 
rotational symmetry constraint, forcing a definite orientation on both the Taylor- 
and Gortler-scale structures. 

The mathematical formulation of the problem is given in Ss2-5, and the solution 
to the linear problem is obtained in $6. I n  $ 7  we discuss the results in the context 
of observations made by a number of experimentalists. 

2. Formulation of the problem 
We wish to describe the dynamics of Taylor-Couette flow in long coaxial cylinders 

when the laminar Taylor number is lo3 to lo5 times the critical value for the onset 
of laminar Taylor vortices. At these high values of T, experiments do not suggest 
extreme sensitivity to end conditions, as is characteristic of laminar flows, and which 
creates great difficulties in predicting the precise axial wavenumber in purely laminar 
flow ; instead we believe that there is no loss of reality in assuming infinite cylinders 
in the mathematical model. 

It is appropriate to use cylindrical polar coordinates in which r is measured radially, 
$ azimuthally and z along the axis of the cylinder, so that the velocity field V has 
components (u, v, w) in these coordinate directions. Observations indicate that the 
flows are steady, i.e. the shape of the observed pattern does not appear to change 
appreciably with time; thus we shall assume that, in some averaged sense, we can 
let a/at = 0. 

We partition the total velocity field into mean and fluctuation fields, i.e. we write 

where we define the (-)-average as 
I f 2n  f l  
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and we have taken P = 0. We assume that 
direction. 
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is entirely in the azimuthal (#)- 

The equations for the mean and 0uctuation fields are 

1 

P 
B x  (V x V )  + v x (0 x V )  -V( v. V )  = --Vp' + uv x (V x V). (2.4) 

It is useful to consider the azimuthal component of (2.3), which may be written 
in divergence form as 

-((T%"u') a = u&(.;(;)), 
at 

where T is the applied torque per unit length at r = R,. 
Since the flow is steady, the torque transport across all cylindrical surfaces must 

be the same and equal to 7 ;  since u' = 0 a t  r = R,, R,, from (2.6) we see that the 
existence of a non-vanishing Reynolds-stress contribution 2 z p r 2 m  to this torque 
transport a t  radial station r implies a steepening of the profile of V / r  near the bounding 
cylinders. Indeed, the observed torque measurements, of the order of 100 times the 
laminar value (Quigley 1981 ; Smith & Townsend 1982), imply the existence of sharp 
boundary layers a t  r = R,, R,, in the mean azimuthal velocity field 6. 

It will be convenient to introduce a stretched coordinate near the walls to describe 
the flow in these layers; we introduce a notation, to be defined more precisely later, 
of 8 for a boundary-layer thickness, and for the mean-velocity field in the boundary 
layer. 

Further progress is dependent on our ability to establish a second relationship 
between the Reynolds stresses and the mean velocity field, and the main concern of 
this paper is the proposal and test against experimental evidence of such a 
relationship, which is in effect a closure of the turbulent-flow problem (see e.g. 
Townsend 1976, p. 124). 

We are guided by the approach and results of Malkus (1979); briefly, we expect 
the flow to be susceptible to two instability mechanisms, a shear instability, which 
relies on the presence of inflectional points in the velocity profile, and a centrifugal 
instability, which can arise when the radial gradient of circulation is negative. The 
local, instantaneous velocity profiles will contain inflectional points which will be the 
seat of shear-flow-type instabilities, albeit modified by rotational effects. However, 
in the spirit of Malkus (1979), we conjecture that there is a range of T within which 
these local shear instabilities conspire to produce a mean-velocity profile having no 
inflection points, and therefore immune from shear instability, but nevertheless 
exhibiting a circulation gradient which can be susceptible to centrifugal instabilities. 
Observations of the mean flows a t  very high Taylor number (see figure 3) support 
these ideas, and the results of Smith & Townsend (1982) suggest that  this conjecture 
holds for 400% < T < 3 x lo5%, but fails for greater values of T .  

The actual form derived by Malkus for cylindrical Couette flow is 

(2.7) 
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Gortler vortex 

FIQURE 5.  Schematic representation of the model examined in this paper. The sketched Gortler-vortex 
cell is the projection of the toroidal Gortler vortex onto the vertical plane. The vortex aligns its 
axis along the total helical streamline found on the outside of the larger toroidal vortex of the Taylor 
type. The intersection of the toroidal Gortler vortex near the x = 1.0 wall has not been shown. 

This expression fails to satisfy the boundary conditions a t  r = R,, R,, and there is 
of necessity a (laminar) boundary layer a t  each wall. Our hypothesis is that a mean 
profile of this general form can support centrifugal instabilities on two separate scales 
L and S associated with the interior region and with the boundary layer, respectively. 
The consequence of these instabilities is the existence in the interior region of a 
coherent, yet turbulent, cellular motion of the Taylor-vortex type, and in the 
boundary layers of a coherent laminar structure of the Gortler-vortex type. We effect 
the closure of the problem by requiring that each of these is a finite- (but small-) 
amplitude disturbance mode occurring in conjunction with a mean profile which is 
very nearly neutrally stable to such a mode. 

This assumption enables us to  proceed with an essentially linear analysis, though 
the model we adopt employs two parameters : 8, the boundary-layer thickness 
introduced earlier, and r, to be defined in (3.19), which is a measure of the mean 
circulation gradient in the interior region. These parameters are nonlinearly related 
through the requirement of marginal stability on the two scales. The form assumed 
for the mean flow is demonstrated schematically in figure 5. 

3. The interior region 
In  developing the analysis, we first consider the interior motion, and partition the 

field V', defined in (2.1), into a part independent, of q5, together with a part dependent 
on r ,  z and 4, writing 

(3.1) i V' = v"(r, z )  + ub(r, q5, z ) .  

p' = @ ( r ,  z )  +p&(r,  $, 2 ) .  

Thus fi(r, z )  represents the field of the Taylor-vortex modes while u k ( r ,  z )  is the truly 
random fluctuation remaining after we subtract out V and v" from the total velocity 
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field. Observational evidence suggests that the lengthscale associated with vh is much 
smaller than that of the Taylor vortices, and hence we can write down governing 
equations, obtained from (2.4) by using (3.1) and averaging over 0 < q5 d 271: and over 
a distance 1 in z ,  larger than the vk scale but smaller than the C-scale. We use the 
notation 

for this average. We non-dimensionalize the equations by writing 

(3.3) 

by scaling all velocities by the inner wall velocity SZ, R,, and by scaling the pressure 
by pSZ:R:. Since the analysis that will follow is linear, it  is unimportant that the 
perturbation velocities are not of order unity on this scale. We also make the small-gap 
approximation, i.e. we assume 

Letting the non-dimensionalized quantities be represented by the same symbols as 
the dimensional quantities used until now, we write the non-dimensionalized 
equations as 

a a d V  
- (ZV") + - (6v") + 3 - = EV2( r+ v") - ( k u k  u h )  - (&.; w;) , ax a2 dx (3.6) 

-(3@)+-($2) a a = - - + E v 2 2 z , -  a@ 
ax aZ aZ (3.7) 

(3.8) 
a a  

ax az 
--.ii+-G = 0, 

and where, in the spirit of the Boussinesq approximation, we have let a+O but 
retained aV in (3.5), at the same time neglecting aV compared with in (3.6). We 
canregard (3.5)-(3.8) as theequations to be satisfied byaneutrally stable axisymmetric 
perturbation, described by v' and 9, to the mean-flow field r ( r ) ,  in the presence of 
small-scale fluctuations uk. In  order to proceed, we need to  make some assumption 
about the Reynolds stresses (uk u h )  etc. appearing in these equations. It should be 
recognized that they are related to  those described earlier in terms of &? by the 

(3.10) 
equation 

since we assume a large-scale uniformity of &?. We exploit the separation of scales 
of the C and v& fields to represent the momentum flux accomplished by the Reynolds 
stresses of the turbulent field (') by an eddy viscosity K coupled to the gradients of 
the mean flow, i.e. we assume that 

- -  m = .iiV"+u;,v;, = 3v"+(ukv&), 

(3.1 1 )  
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where K is to be determined by the closure condition of marginal stability; i t  depends 
on the &field, but we shall regard it as taking some suitable averaged value, 
recognizing that this is undoubtedly an idealization. 

We can now introduce a stream function t,k such that 

u = -+,, w = 4,. (3.12) 

Experiments (e.g. Bouabdallah & Cognet 1980 ; Smith & Townsend 1982) provide 
direct evidence that, a t  large T ,  the magnitude of meridional motion is a rapidly 
decreasing function of the magnitude of azimuthal motion, and we shall argue that 
small angles of the herringbone streaks provide indirect evidence of the small 
amplitude of the meridional motion. Thus we write 

1 4 = E$bl+E2$b2+ ..., 
7J = ~ + E v " 1 + E 2 ( ~ z + v " 2 ) + . . . ,  

(3.13) 

where E is a small parameter proportional in some sense to the tilt angle 8, which 
we have related to a measure of the Taylor vortex amplitude. Substituting (3.13) in 
(3.5)-(3.8) and eliminating the pressure to form a vorticity equation, we obtain, after 
linearizing with respect to the suffix- 1 quantities, the following leading-order problem 
in E :  

2a K Elz = EK V4J1, (3.14) 

where 

d K  - - J,, - - EV%, , dx 

EK = K/Q1 LR,. 

(3.15) 

(3.16) 

The parameter EK may be thought of as an eddy Ekman number which is related 
to  an eddy Taylor number through 

T K  = R, SZ; L3/h?. 

I n  deriving (3.14) and (3.15), we have assumed E < EK and 

(3.17) 

V2K = 0, (3.18) 

consistent with our representation of the basic state in the interior region by 

~ ( x ) =  $-r(x-+), (3.19) 

I n  anticipation of the smallness of r, the result of substituting (3.19) into (3.14) 

av",, = EK V4J1, (3.20) 

rJl = EK vzv",;, (3.21) 

where r is as-yet unknown. 

and (3.15) is 

which give, upon eliminating El, 

(3.22) 

The quantity a r / P K ,  which will appear later as an eigenvalue of the boundary-value 
problem, may be written in terms of the laminar Taylor number T as 

We have considered in the Appendix the effect of retaining the O ( r )  terms in (3.14) 
and (3.15); their neglect appears to be well justified. 
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4. The boundary-layer region 
The boundary layer found on the x = 0 wall has a basic velocity field, denoted by 

Y ( x ,  z ) ,  which at the ‘edge’ of that layer must match the sum of the interior and 
‘u“,, fields. Note that the z-component of “Ir alternates in sign between adjoining 
Taylor vortices in the interior flow. Superposed on the basic field we assume the 
existence of a perturbation field 6, constituting the Gortler vortices, which, we 
conjecture, arise as an instability of the basic field. 

It is advantageous to discuss the dynamics of the boundary layer in terms of an 
intrinsic coordinate system in which the z- and $-coordinate directions are replaced 
by coordinate directions $ along the total streamline direction of Y ,  and g normal 
to that direction. This system is tilted a t  an angle 0 to the (q5, z)-system, and we assume 
that 

consistent with the matching condition a t  the edge of the boundary layer. 
Ifwe introduce stretched intrinsic coordinates, based on a boundary-layer thickness 

~” 

6, so that 

this matching condition is 
2 = x / s ,  (4.2) 

(4.3) V( co ’ 2 )  = ( K(0) + d,(O, z )  + . . . , $lz(o, 2) + . . . ). 
The other new coordinates are 

1 
Y 2 

$ = -cose+-sinO, 
6 S 

g=  --sinO+-cosO, 
Y 2 

6 6 

(4.4) 

and the components of the perturbation velocity field 6 are related to V‘ of (3.1) by 

8 = vfcosO+w’sinO, 

zi, = -v’sin8+wfcos0. 

(4.5) 

Following, for example, Hammerlin (1956), we may write the linearized equations 
for the stability of longitudinal Gortler vortices in the form 

where llr is the magnitude of “Ir and G(,, is a Gortler number defined by 

P a  i2;R;L2S2 L6 G =-- 
(8) - EZR - v2 R,R (4.7) 
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and based on the non-dimensional radius of curvature R( = 1 + O(Oz)) of the streamline 
of the total velocity Y .  As boundary conditions we require that 

The above eigenvalue problem was first considered by Gortler (1940), then by 
Meksyn (1950), and in greater detail by Hammerlin (1956), who calculated the 
marginal curve for six velocity profiles, and found that his results were insensitive 
to details of the basic state profile. The profile 

i .=( 2 (0 < 2 6 l) ,  

1 ( 2  > 1)  (4.9) 

was one of the six considered by Hammerlin as well as Meksyn. The Gortler number 
was defined in these problems in terms of a momentum thickness a,, where 

which gives 6, = &S for the profile (4.9). Hammerlin’s calculations showed that: 
(i) the minimum critical Gortler number was fairly insensitive to the exact shape 

of the profile and that 
(4.10) 

or 
G(a), x (0.09) 63 x 19, 

where we have denoted by a suffix c the minimum critical value; 
(ii) the minimum critical Gortler number occurred for wavelengths large compared 

with 6,: the critical wavelength A, for 6/R - was shown by Hammerlin to be 
near 4 0 ~ ~ 6 ,  ; 

(iii) the velocity profiles, when plotted against the coordinate 2, normal to the 
boundary, were close to their maximum value when 2 = 1, i.e. when the basic-state 
velocity V had reached its freestream value. 

There is some disagreement in the literature over the appropriate value for G(s,,, 
and in making comparison with experiments we have used the value G(a,,c = 0.36, 
with a concomitant change in the value of A, to about 15n6,, which appears to 
represent the consensus of opinion (Meksyn 1961 ; Smith 1955; Bippes 1972; Floryan 
& Saric 1982). Very recent work by Hall (1982, 1983) has stressed the deficiencies 
of many of these theories and has pointed to the importance, in the classical 
growing-boundary-layer problem, of the non-parallel nature of the flows and the 
dependence on distance from the leading edge. Substantial changes in G, were noted 
by Hall, and we are conscious of the uncertainty surrounding the precise values to 
be used in this somewhat different problem, of which a detailed study seems 
worthwhile. However, the dependence of the experimentally measurable quantities 
on G, is weak, at worst on the 4 power. 

5. Boundary and matching conditions 
We have already required that the Gortler solution satisfies the no-slip condition 

a t  the rigid boundary found a t  2 = 0. Also the small-scale fluctuating motions due 
to the Gortler vortices vanish as 2+ 00. We must now provide a set of matching 
conditions between the laminar Gortler region and the turbulent Taylor-vortex 
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region. Because of the insensitivity of the dynamics in the Gortler layer to the exact 
choice of a basic-state velocity profile in that region, we choose the simplest velocity 
profile and require thak 

(5.1) 
+(r--ip+i ( o e ~  I ) , \  

1 r={  K(0)sece (2 > I ) ,  

where, from (3.19), 

%(x) = i ( l+r)--I-x,  x = 62. 

Matching a t  2 = 1 gives, on requirement of 
( a )  continuity of velocity parallel to the interface 

r (1 , z )cOsB = E(o)+51(o,z), ‘I 
~ ( 1 ,  z )  sin e = GlX(o, z )  ; I 

( b )  continuity of tangential stress 

and we can now use the more specific definition 

where 1, is the Gortler-vortex scale. 
To leading order we get 

(5.5) 

(5.7) 

J , (O,  2) = 0. (5.10) 

Finally taking an ()-average of (5.2) and subtracting that result from (5.2) gives 

5,(0, 2) = 0. (5.1 1 )  

6. Leading-order solution 
I n  the interest of clarity let us summarize the statement of the problem. The 

Taylor-vortex problem is governed by (3.22), (3.12), (3.20), (5.11), (5.10) and (5.9), 
which may be written as 

aT - 
V6G1 -- @lZZ = 0, Ek (6.1) 



where 
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GIX = :"V4J1, 
a 

subject to  the boundary conditions 

i.e. 
'u1(O, 2 )  = G 1 ( l ,  2 )  = 0,  

I n  deriving (6.6) from (5.9), we have used (4.2) and (5.1). A similar condition to  (6.6) 
holds at 2 = 1.  

The basic state consists of 

(6.7) I Y =i++(r-ipL (0 G 9L G I ) ,  

v , = ; ( i + r ) - r x  ( 0 ~ 2 ~  I ) ,  

Y=+(r - ip ,  ( - 1  G,GO), 

- 

where 9L and 9, are the stretched variables on the left and right boundaries. 
Continuity of stress in the basic state requires that, from (5.7), 

1 v  
2 KS 
-- ( 1 - 0  = r, 

together with a similar condition near the x = 1 boundary. In  these equations we do 
not know 6, r, K and therefore EK.  

Using (6.8) in (6.6) we find that the latter simplifies to 

Observational evidence seems to point to the smallness of r; thus, if we drop the term 
O ( r ) ,  (6.9) approximates to 

J,,,(O, 4 = 0. (6.10) 

Equations (6.10), (6.4), (6.5) and (6.1) constitute the classical free-free Rayleigh- 
BBnard convection problem (Chandrasekhar 1961). We can at once write that  the 
minimum critical value of the parameter entering (3.22) is 

(6.11) 

where the subscript c denotes a quantity at its critical value. The critical non- 
dimensional wavenumber associated with that problem is 

(6.12) 
7c 
- w 2.22. 
d2 
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The problem described by (4.6), (4.7) and (4.8) is exactly the problem considered by 
Gortler and others, except that  the mainstream flow has a magnitude $Ql R, (1 -0 
instead of unity; the appropriate Gortler number for this problem is then 

(+( 1 - r) Q, R, L S ) ~  LS 
' ;8)  = V 2  R,R' 

If we take the maximum critical value of G{8,c x 76 we get 

(6.13) 

where we have assumed that R, the normalized radius of curvature, is unity, and have 
taken the larger value of G(a2)C mentioned in $4. 

If we demand that each flow structure is close to marginal stability, we obtain from - 
E2 G 
a T '  

(6.13) the critical thickness 
8: = - G  = 3 

(6.14) 
i.e. 

while from (6.4) we obtain a relationship between r and E,. From (5.7) 

8, = C;, T-i, 

(3, = 2 S c q  - - 28, r, 

Using the above expression in (6.1 1 )  we obtain 

and using (6.16) in (6.15) we get 

(6.15) 

(6.16) 

(6.17) 

Another quantity that can be measured is the torque; in dimensional form the 
torque 9* per unit length of the cylinder 

7~0, R:,u 1 -r 
9* = 

L 6, ' 
i.e. 

(6.18) 

Equations (6.11), (6.14), (6.16), (6.17) and (6.18) constitute the main results of this 
investigation. All these quantities, with the exception of ( v / K ) ,  , are measurable, 
implicitly or explicitly, and in $ 7  we comment on the relationships of predicted to 
observed values. 

7. Discussion and conclusions 
I n  constructing this model we have assumed 
(i) inhomogeneous turbulent shear flow with boundary layers a t  the cylindrical 

(ii) that inflexional instabilities create a mean profile which is itself immune from 
walls (based on all experimental evidence) ; 

further inflectional instability ; 
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FIGURE 6. Scale of Taylor cells relative to gap width observed in experiments with varying gap 
widths. Experiments performed by D. J. Quigley ; results of Koschmieder (1979) also indicated; 
theoretical prediction indicated by middle dashed line. Experimental results of Koschmieder (1979) 
indicated by upper dashed line (steady increase in a experiments) and lower dashed line (sudden-start 
experiments). 

(iii) that the resulting profile might nevertheless be susceptible to centrifugal 
instability ; 

(iv) that this profile might be modelled by straight-line segments in the (turbulent) 
interior and in the (laminar) boundary layers ; 

(v) that each of these segments is marginally stable to centrifugal instabilities, 
represented respectively by modes of Taylor-vortex and Gortler-vortex type ; 

(vi) that the transport of torque across the channel may be modelled by an 
appropriate viscosity coupled to the mean flow and that in the interior the mean flow 
is coupled to an eddy viscosity parametrizing the Reynolds stresses of the fluctuating 
fields. 

It seems to us that assumption (i) is amply justified without further comment, that 
(iv) and (vi) are in the nature of approximations to the true situation, but are not 
crucial to the qualitative merit of the model, but that (ii), (iii) and (v) are hypotheses 
of major importance, which enable us to close the problem mathematically, and which 
are to be tested by comparison of predictions with observations. A number of features 
predicted in $6 may be so compared; it is convenient to review them systematically. 

7.1. Scale of Taylor cells 
We noted in $4  that the boundary-value problem for the Taylor cells is identical (in 
this limit of small gap-width/radius ratio) to the problem of Rayleigh-BBnard 
convection in a horizontal layer bounded by stress-free horizontal surfaces - the 
so-called free-free problem. The horizontal wavelength of the convection rolls 
predicted by linear theory in that well-known problem is 4 2  times the layer 
thickness. Observations by Koschmieder (1979) and other workers including Mobbs 
provide supportive experimental evidence for this scale. In  figure 6 we have 
assembled relevant observations from a number of workers ; the comparison with the 
predicted value is seen to be good. 

15 F L M  143 
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FIGURE 7 .  Non-dimensional torque transport measured in experiments performed by D. J. Quigley 
in long annulus with L/R, - 0.1. Theoretical predictions (based on (6.18) and (6.13)) indicated by 
solid line representing the expression 

Batchelor's (1960) prediction has the form 

where A is an unknown constant, certainly less than 0.5 and possibly O ( l 0 - l ) .  For comparison 
we indicate by a dashed line this expression for the (arbitrary) value A = 0.2. 

7.2. Torque transport 

Expression (6.18) for the torque, viz 

d2, Riu 
$9, z -G$ @, 

L 

is seen to vary as 52% with increasing 52,. 
It is interesting that the model for high-Taylor-number flow proposed by Batchelor 

(1960), based on the conjecture that a laminar boundary-layer flow in the meridional 
velocity component surrounding the Taylor cell is present, predicts a variation as 52f 
for large 52,. It appears that the model proposed here permits a larger torque 
transport. Comparison with torque measurements (Brindley, Mobbs & Quigley 1981) 
is good for large 52, (figure 7) .  This accuracy of the linear theory is compatible with 
the observations of Bouabdallah & Cognet (1980) showing a decreasing Taylor-cell 
amplitude for increasing, 52, (figure 4). 
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7.3. Internal circulation gradient 

No systematic series of experiments has provided values o f f  to compare with the 
value o f f  predicted in (6.16), which implies that r - Q;?. However, all experimental 
results (e.g. Smith & Townsend 1982; Taylor 1935) support the qualitative form of 
the mean gradient we have assumed. I n  the above theory we have of course, assumed 
the torque transport across the interior to be accomplished solely by the mean flow ; 
the amplitude of the Taylor vortex has effectively been taken to be zero. A more 
realistic model should take account of the torque transport accomplished by 
Reynolds stresses associated with a finite-amplitude Taylor cell, with a consequent 
reduction in the value of r, and of the effects of finite gap width. It is however 
worthwhile to examine a posteriori the consequences of taking into account the finite 
value of r predicted ; this we do in the Appendix. 

7.4. Scale of Gortler vortices 

We have already commented in BBLM and in § 1 on the excellent agreement between 
prediction and experiment (figure 1) .  It is particularly noteworthy that the predicted 
non-dimensional scale 

A, 6xLS, 
-%- 

Rz Rz (7.2) 

is independent of gap width. The observational results illustrated, based on four 
widely differing gap widths, collapse very closely on to the predicted curve (figure 
I ) ,  showing convincingly that the observed phenomenon is independent of gap width, 
and depends only on ‘mainstream velocity’ @2, R, and curvature R,. The values of 
Taylor number for the cases illustrated vary by a factor of nearly 200 for the same 
value of Q,. 

7.5. Orientation of Gortler vortices 

We cannot expect our linear theory to give any information on this, as the orientation 
depends on the amplitude ofthe Taylor-cell motion. However, we can compare (figure 
8) observations of the orientation for varying 52, with observations of Taylor-cell 
amplitude at large Taylor number (Boubdallah & Cognet 1980). There is clearly no 
evidence here to invalidate the assumption that the streak orientation measures the 
direction of the total velocity in the Taylor-cell motion. 

As the orientation varies, the radius of curvature R also varies, in which case, using 
the definition of C, in (4.10), i t  is clear that S - !2;%&. This is of course maximized 
by minimizing R, which means reducing 0, the result of which is that  the length of 
the individual Gortler vortices is increased. Now, a well-known consequence of the 
presence of longitudinal vortex structures in turbulent spots arising in wall boundary 
layers is the evolution of longitudinal flow profiles having points of inflection (e.g. 
Blackwelder & Eckelmann 1979). These profiles arise as a consequence of the 
sweeping of low-velocity fluid away from the wall by a pair of adjacent counter-rotating 
vortices. We might then conjecture that, at still higher Taylor numbers, the 
lengthening of the Gortler vortices could lead locally to an inflectional instability 
mechanism of this kind, which would disrupt the organized, coupled structures 
described here, and result in a flow more nearly like a turbulent channel flow in its 
character. Experiments a t  higher values of T (Smith & Townsend 1982), carried out 
since a first version of this paper was written, appear to bear out this conjecture. 

Before concluding, a comment on the stability of our first-order model might be 
useful. Thus, although we have assumed that  the mean profile remains near that  

15-2 
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FIGURE 8. Variation with T of orientation of Gortler vortices. Solid line indicates orientation of 
total velocity vector near outer cylinder as deduced from Taylor-vortex-amplitude observations of 
Bouabdallah & Cognet (1980) and reproduced in figure 4. 

required for marginal stability of both Taylor vortices and Gortler vortices, we can 
consider, in a qualitative way, how the (small) transports of torque achieved by these 
vortices can act to 'tune ' this profile. Suppose, as a consequence of a slightly excessive 
value of r, the amplitude of a Taylor vortex increases from its equilibrium value; this 
will increase 8 and increase the radius of curvature of the total streamlines near the 
wall. In  the absence of other changes, the Gortler number will be decreased and the 
amplitude of the Gortler vortices will decrease in intensity, leading to an imbalance in 
the torque transport by these vortices. This must be compensated by a small change 
in the mean profiles in which, since the mean interior profile must transport less 
torque, the value of r w i l l  decrease. This negative-feedback effect, albeit only part of 
the complex total physics of the problem, presumably aids the persistence of the 
stable pattern observed. 

Finally, then, it appears that most of the readily observable features of the flow 
a t  high Taylor number are reproduced by the model we have proposed. The 
coexistence of steady flow features on widely differing scales, but exhibiting a strong 
mutual interdependence is perhaps the most interesting feature of the flow we have 
described. Such a coexistence is known to exist in many turbulent flows (see e.g. 
Lumley 1981), though not in as steady and readily reproducible a form as here. It 
is a question of some importance to discover the extent to which this interdependence 
relies on the strong constraint imposed by rotational symmetry. There appears to 
be a distinct possibility that  this constraint permits the existence in a steady state 
of coupling mechanisms between boundary layer and 'mainstream' which in other 
flows, e.g. turbulent channel flows (Beljaars, Prasad & De Vries 1981), occur in 
unsteady bursts with only a statistical steadiness. If this is so, the Taylor-Couette 
experiment may prove a valuable test bed for the development of deeper understanding 
of boundary-layer-mainstream interactions in other turbulent flows. 
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his results available to us. We are grateful also to David Quigley for obtaining the 
experimental results on the scale and orientation of Gortler vortices, and on torque 
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liaison scientist with ONR, London. ONR partial support (NOOO-14-78-C-0106) is 
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Appendix, Inclusion of the effects of non-zero r 
The equations governing the motion on the Taylor-cell scale may be written ((3.14), 

(3.15), (3.19), (6.4), (6.5), (5.9)) as 

I v6 J ,  - A{ 1 + r(1- 2 4 )  J l Z 2  = 0, 

Glxzxx(o> x )  = G1zzzAL 4 = 0, 

J l C O ,  4 = J,(L 2) = 0, 

where 

If we now write 

we can establish a sequence of problems at increasing powers of r. The zeroth-order 
problem is of course the classic freefree Rayleigh-BBnard convection problem, as 
we have observed in $6. The first-order problem becomes 

Equations (A 4) clearly constitute a forced system, and we need to  express an 
orthogonality condition to permit a solution. Multiplying the differential equation 
of (A 4) throughout by @) and integrating from x = 0 and z = 1 then yields a value 
for A(,). 

On assuming that 

(GI"', J p )  = (F(O)(x), F(l)(x)) coskz, (A 5 )  

we find, on using the boundary conditions, that the orthogonality condition takes 
the form 

[p) $'(I) -3kZ$'(O) x F(1)]1 zz 0 = h(l)k2(P(0)2) -h(@)k2( (1  - 2%) F(O)2), (A 6) 5x2 xx 
where ri 
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If we now set F(O)(x) = sinmnz (m = 1,2 ,  ...), 
and note that 

and 

we find finally that 

Thus 

F g ( 0 )  = - 2 F 3 0 )  

F g (  1) = 2 F 3 1 ) ,  

A(') = - 8m2n2(m27?+ 3k2) k-2. 

h z {(m2n2+k2)3-8m27C2r(m2n2+3k2))/k2+ .... 

(A 8) 

(A 9) 

If we now assume that the most-unstable mode is m = 1 ,  we find, on minimizing with 
respect to k, that 

whence, writing 

we have 

Thus the value of k2 for the mode going unstable at the lowest value of h is 

for r x 0.2 the correction on the classical value in2 is seen to be only about 1.5 %. 
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